ejabberd architecture and challenges 1n
designing a modern messaging service

17th November 2015
Mickaél Rémond <mremond@process-one.net>

¢ Pprocessone

Introduction

ejabberd Is scalable and versatile enough to adapt to most of the realtime messaging jobs you

will want to handle.

or many tasks, like corporate messaging, you can consider ejabberd as a standard package.

However, to reach high level of scalability and flexibility, you need to consider ejabberd as an
XMPP framework.

AS such, to build your modern messaging system, you need to:

e Be familiar with XMPP - Prerequisite.
e L earn ejabberd architecture
e Learn ejabberd API

e \Work on solution design.

Take control of your messaging platform and design it !

ejabberd: Routing messages in a statefull world

ejabberd is a message router. Its role is to support real time messaging feature by moving
mMmessages from clients to other clients.

N that sense it Is stateless.

However, to integrate in a statefull world, ejabberd has to support statefull features:

e Stateless:
e cjabberd is an XMPP server: Its goal is to route XMPP packets between JID.
o Statefull:
e [N MoOst case ejabberd depends on data (user base, contact list, ...) or produce data

(message archive, ...)

Goal: deploy an ejabberd that is as stateless as possible, by leveraging backends.

What are ejabberd backends ?

Backends are pluggable modules you can configure to define where you would like to store part
or all of your data.

Backends provide the data to the feature modules of ejabberd.

hey can be read-write or read-only if you do not need some of the ejabberd associated
features:

e For example, If you handle user management elsewhere in your infrastructure, you can

use a user back-end that can only authenticate users but not create them.

ejabberd internals: Feature modules rely on data
modules - backends

Features Modules

ejabberd node

Contacts - Rosters Authentication
- Mnesia

- Mnesia _ i
_ | - SQL (MySQL, Postgres)
Profile - VCards Message archive SQ': %@(}QLLZ;Z% gres) - NoSQL (Riak)
- Mnesia - Mnesia - LDAP - LDAP
- SQL (MySQL, Postgres) - SQL (MySQL, _ Rest AP| - PAM router

- LDAP Postgres) S - Rest API

S2S
(federation)

Reliability & Security Modules

Carbon copy w Message traceability Shapmg / anti DOS

)
k=
S
)
e
7
=
@
i
7
d
O
X
O
O
0p)
i
o
=
L
)
ol

session manager

c2s

Available backends

e Modules that need data backends generally support:

e |Nnternal database: Mnesia
« RDBMS: MySQL / MariaDB, Postgres, SQLServer / Azure SQL, SQLite
e NOSQL: Riak

e SOmMe of them support additional backends (i.e authentication, shared roster):

e LDAP / Active Directory / Azure Directory

e cjabberd SaaS provides ReST API description to implement HT TPS backend for:
e User authentication,
e Contact list (rosters),

e Message archiving

e Custom pbackends in ejabberd-contribs: 1.e. HT TP authentication.

Properties of ejabberd backends

Backend can be combined: Different features can use different backends to leverage different
backend properties:

e Massive amount of data
e Speed

RBackends are API| baseq:

e [hey are developed using ejabberd API.

e |t means you can write your own backend to meet special needs.

Selecting the right backend or deciding to write your own for the each module is part of
ejabberd solution design.

The example of ejabberd SaaS

. ejabberd SaaS architecture
Statefull mode

XMPP - 5222

Websocket / Bosh: ejabberd SaaS
HTTP - 80

HTTPS - 443 managed by

\ ProcessOne
u
- 5222

XMPP

\4

ejabberd SaaS database
User / password
Rosters
Message archives
Offline messages
Last seen
Privacy lists

ejabberd Instant Messaging Pubsub nodes
ejabberd cluster Push tokens (APNS / GCM)

ejabberd API - ReST or XML-RPC
User base Contact list
manage remotely manage remotely

Customer backend

ejabberd SaaS architecture
Stateless mode

Mobile - Desktop - Web Browser

XMPP - 5222
Wbkt | B ejabberd SaaS
HTTPS - 443 managed by
ProcessOne

v

Load balancers

XMPP - 5222

l

ejabberd SaaS database
Offline messages
Last seen
Privacy lists
Pubsub nodes
Push tokens (APNS / GCM)

ejabberd Instant Messaging
ej_abberd cluster

ejabberd ReST data access layer
select one or sc-_zver_al backends

Message

Roster cal s
User calls Archiving calls

Data backend
managed by
More to come customer

User endpoint Roster endpoint Message archive
(contacts) endpoint

The XMPP client is part of the equation

When designing a messaging the client is part of the equation:

e MoDbile devices are now powerful: It can take a part of the server job.

e Mobile limitations: [t cannot run all the time: Server has to handle part of the client job.

e Badly designed clients can generate enormous load on server and become a burden.
Think:
e exponential back-off.
e LONg running session on the server.

e Avolid useless extra load: XMPP Ping vs lightweight Keep-alive.

The XMPP session becomes stateful as well.

Open TCP/IP Close stream
and stream

/

Session closed

Stream opened

D

or TCP/IP

connection

— Login =

AN

Session established

Enable
push mode

-

.

Session with push
m mode enabled

Standby /

Inactive

Active

g

171 Standby mode
imit traffic, filter

presence)
/
M Inactive client
(CSI)

Session
expires

Close stream

Open TCP connection
and rebind
to session

(m Detached session

Session still opened

Can receive push

\.

TCP close

Conclusion

Don't build your messaging platform without a clear vision of what you are building !

You need to become an architect of your "Messaging Zen Garden" |

srpms

S

